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ABSTRACT 
 

In this paper, we study two types of indefinite integrals. The analytic solutions of the two indefinite integrals can be 

obtained mainly using differentiation with respect to a parameter and integration term by term. In addition, we 

propose two examples to demonstrate the calculations. The research method adopted in this study is to find solutions 

through manual calculations and verify our answers using Maple. This method not only allows the discovery of 

calculation errors, but also helps modify the original directions of thinking. 
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I. INTRODUCTION 

 

The computer algebra system (CAS) has been widely 

employed in mathematical and scientific studies. The 

rapid computations and the visually appealing graphical 

interface of the program render creative research 

possible. Maple possesses significance among 

mathematical calculation systems and can be considered 

a leading tool in the CAS field. The superiority of Maple 

lies in its simple instructions and ease of use, which 

enable beginners to learn the operating techniques in a 

short period. In addition, through the numerical and 

symbolic computations performed by Maple, the logic of 

thinking can be converted into a series of instructions. 

The computation results of Maple can be used to modify 

our previous thinking directions, thereby forming direct 

and constructive feedback that can aid in improving 

understanding of problems and cultivating research 

interests. 

 

In calculus and engineering mathematics, there are many 

methods to solve the integral problems, for example, 

change of variables method, integration by parts method, 

partial fractions method, trigonometric substitution 

method, etc. This paper considers the following two 

types of indefinite integrals which are not easy to obtain 

their answers using the methods mentioned above. 

dxxxx bam cosh)(ln ,                       (1) 

dxxxx bam sinh)(ln ,                       (2) 

 

where xba ,,  are real numbers, 1a , ,0b  

0x and m  is a positive integer. We can obtain the 

analytic solutions of these two indefinite integrals 

mainly using differentiation with respect to a parameter 

and integration term by term; this is the major result of 

this study (i.e., Theorem A). Adams et al. [1], Nyblom 

[2], and Oster [3] provided some techniques to solve the 

integral problems. On the other hand, Yu [4-31], Yu and 

Chen [32], and Yu and Sheu [33-35] used complex 

power series method, integration term by term theorem,  

Parseval’s theorem, area mean value theorem, and 

generalized Cauchy integral formula to evaluate some 

types of integral problems. In this paper, two examples 

are used to demonstrate the proposed calculations, and 

the manual calculations are verified using Maple. 

 

II.  MAIN RESULTS 
 

First, some formulas used in this paper are introduced 

below. 
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Next, we introduce two important theorems used in this 

study which can be found in ([36, p283]) and ([36, 

p269]) respectively. 

2.4 Differentiation with respect to a parameter: Suppose 

that  are real numbers and the function

is defined on . If  and 

its partial derivative 
 
are continuous 

functions on . Then 

 
is differentiable on the open interval 

. Moreover,  for all 
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2.5 Integration term by term: Assume that  0nng
 
is a 

sequence of Lebesgue integrable functions defined on I

. If  


0n
I ng  is convergent, then   




I

n
ng

0

 


0n
I ng . 

In the following, we determine the analytic forms of the 

indefinite integrals (1) and (2). 

Theorem A  Suppose that xba ,,  are real numbers, 

1a , 0,0  xb , m  is a positive integer, and 

C is a constant, then  
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and 
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Using differentiation with respect to a parameter, 

differentiating m  times with respect to a  on both sides 

of Eq. (5), then 
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Similarly, by Formula 2.2, integration term by term, and 

differentiation with respect to a parameter, Eq.(4) is 

easily obtained.  q.e.d. 
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III.   EXAMPLES 

 

Next, for the integral problems discussed in this study, 

two examples are proposed and we use Theorem A to 

determine their analytic solutions. Additionally, we 

employ Maple to calculate the approximations of some 

definite integrals to verify our answers. 

Example 1   Using Eq. (3) yields 
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(7) 

Next, we use Maple to verify the correctness of Eq. (7). 

> evalf(int((ln(x))^3*x^2*cosh(x^4),x=2..3),18); 

331002424952760244498.8   

> evalf(6*sum(sum((-1)^(3-k)/(k!*(2*n)!*(8*n+3)^(4-k 

))*((ln(3))^k*3^(8*n+3)-(ln(2))^k*2^(8*n+3)),k=0..3), 

n=0..infinity),18); 

331002424922760244498.8   

Example 2   By Eq. (4), we have 
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(9) 

Using Maple to verify the correctness of Eq. (9) as 

follows: 

> evalf(int((ln(x))^7*x^3*sinh(x^2),x=3..4),18); 

81037680318293478110.2   

> evalf(7!*sum(sum((-1)^(7-k)/(k!*(2*n+1)!*(4*n+6)^ 

(8-k))*((ln(4))^k*4^(4*n+6)-(ln(3))^k*3^(4*n+6)),k=0.. 

7),n=0..infinity),18); 

81037680318293478110.2   

 

IV. CONCLUSION 

 
In this paper, some techniques: differentiation with 

respect to a parameter and integration term by term are 

used to evaluate two complicated integrals. In fact, the 

applications of the two methods are extensive, and can 

be used to easily solve many difficult problems; we 

endeavor to conduct further studies on related 

applications. In addition, Maple also plays a vital 

assistive role in problem-solving. In the future, we will 

extend the research topics to other calculus and 

engineering mathematics problems and solve these 

problems using Maple. These results will be used as 

teaching materials for Maple on education and research 

to enhance the connotations of calculus and engineering 

mathematics. 
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